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ABSTRACT 

Closed form expressions are obtained f o r  t h e  displacement, i n  t h e  r a d i a l ,  

c i rcumferent ia l  and a x i a l  d i rec t ions  r e spec t ive ly ,  f o r  a c y l i n d r i c a l  s h e l l  

segment subtended by an a r b i t r a r y  angle 0 and subjected t o  an a r b i t r a r y  

load-d is t r ibu t ion .  Laplace and f i n i t e  Fourier s ine  and cosine transforms 

0 

a re  employed to accomplish the  so lu t ion .  A numerical example, u t i l i z i n g  an 

iciealized equivalent t r i angu la r  b l a s t  load, i s  included t o  provide a com- 

par i son  with ava i lab le  experiimental data as found i n  the  l i t e r a t u r e .  Further- 

more, t h e  e f f e c t  of t h e  magnitude o f  t h e  th ickness  t o  rad ius  of curvature 

r a t i o  (-), and of t h e  negligence of t h e  i n e r t i a l  terms i n  t h e  axial and 

c i rcumferent ia l  d i r ec t ions ,  on the frequencies , are  inves t iga ted .  
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,. INTRCDUCTION 

Experimental data ,  concerning the response of buried arches or tubes t o  

b l a s t  wave loading i s  avai lable  t o  some extent ;  however, adequate theor ies  

and t h e o r e t i c a l  solut ions upon which t h e  design of such s t ruc tu res  may be 

based are  l a c k i n g i n t h e  l i t e r a t u r e .  The present so lu t ion  i s  t o  provide 

a s t e p  i n  t h i s  d i rec t ion .  

The inves t iga t ion  i s  r e s t r i c t e d  t o  t h e  dynamic response of a simply 

supported cy l ind r i ca l  s h e l l  segment subjected t o  an a r b i t r a r y  loading. The 

bas i c  system of equations i s  taken d i r e c t l y  from [5] and modified only by the  

inc lus ion  of t he  i n e r t i a  terms and forcing functions.  The equations then a re  

non-dimensionalized with respect  t o  t h e  length of t he  arch, L, t he  subtended 

angle 0_ and the decay time of t he  applied b l a s t  load, i n  order t o  simplify 

the  necessary ca lcu la t ions .  This system of l i n e a r  p a r t i a l  d i f f e r e n t i a l  

v 

equations i s  reduced t o  a l i n e a r  a lgebraic  system i n  the transformed displace- 

ment funct ions,  by eliminating the time dependence by means of t h e  Laplace- 

transformation and the  s p a t i a l  dependence by means of double, f i n i t e  Fourier 

s ine  and cosine transforms. A simple appl ica t ion  of Cramer's r u l e ,  and the  

inversion of t h e  transformed displacement functions r e s u l t s  i n  the  f i n a l ,  closed- 

form solut ions.  

A numerical example, t h e  dynamic response of a semicircular cy l ind r i ca l  

s h e l l ,  i s  included t o  provide a qua l i t a t ive  compazison t o  experimentally 

obtained da ta  [l]. 

of magnitude i s  concerned, s ince the  arch t e s t e d  i n  [I] was s t i f f ened  con- 

s ide rab ly  by the  surrounding s o i l  so  t h a t  it w a s  t o  be expected t h a t  the  

measured def lec t ions  r e su l t i ng  from the  dynamic load would be l e s s  than those 

obtained by t runcat ing the  theo re t i ca l  s e r i e s  solut ions obtained i n  t h i s  paper. 

The comparison here w a s  possible  only so  far as t h e  order 



The e f f e c t  on the  na tu ra l  frequencies of t he  system, of t h e  omission of 

t he  i n e r t i a l  terms i n  t h e  a x i a l  and circumferent ia l  d i rec t ions  f o r  varying 

h values of t h e  r a t i o  - i s  found t o  be negl ig ib le  (of t h e  order of 1%) f o r  t he  R 

higher frequencies,  up t o  a ce r t a in  l imi t ing  value,  beyond which t h e  i n e r t i a l  

terms must be included. 
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e -  Notation: 

- 

[I 

Symbols : 

d 

I E 

l h 

I L 

M 

N 

R 

S 

t 

P 

Bar above a le t ter  denotes t h e  Laplace transform of a funct ion 

with respect  t o  t h e  non-dimensional time va r i ab le  T 

Superscr ipts  ( s )  and ( c )  denote f i n i t e  Fourier  s ine  and cosine 

transforms respect ively.  

Superscr ipts  ( c s ) ,  ( cc )  and ( s s )  denote successive f i n i t e  Fourier  

transforms. 

Denote references i n  t h e  bibliography. 

Equivalent decay time. 

Modulus of e l a s t i c i t y  

Thickness of s h e l l .  

Length of  s h e l l .  

Moment. 

Normal o r  shear force.  

Surface loading components i n  the  d i r ec t ions  indicated by the 

subscr ip ts .  

Radius of  the  cy l ind r i ca l  s h e l l  segment. 

Iap lac ian  parameter. 

Time var iab le .  

Displacements i n  the x,y, z-direct ions (Figure 1). 

Poisson 's  r a t i o .  

Density. 
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e - Equations of Motion 

The s t a t i c  equations of general c y l i n d r i c a l  s h e l l  theory may be found i n  

[5]. These equations are modified by t h e  inc lus ion  of t h e  i n e r t i a l  fo rces  

and a r b i t r a r y  forc ing  functions.  They thence have t h e  form: 

2 a U  7 - 2  - - (Pu - Ph -> 
at' 

2 
(1-v 

2 2 2 a U  i + v a V  v a w + i - V a U -  
2 2~ axae R a x  2R ae 

- + - - - - -  
ax 

2 a v  
(Pv - Ph -1 

a t 2  
2 

a w  (1-v 
2 2 2 

l+v a 1-v a a -- + - -  + - - -  = -  a axae * ax2 R2ae2 R ; B e  Eh 

where t h e  loading components pu, p , and p, are functions of x, 8, and t. 
V 

The problem i s  completely formulated, when t h e  following boundary and 

i n i t i a l  conditions a r e  included : 

a )  i n i t i a l  conditions : 

w(x,e,o) = &e,o)  = v ( x , ~ , o )  = 0 ;  

wt(x,e,o) = ut(x,e,o) = vt(x,6,0) = 0 ;  

b)  boundary conditions : 

i) imposed on 8 
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FIG. 1 
CYLINDRICAL SHELL SEGMENT 
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ii) imposed on x 

I -  

= u ( L , B , t )  = 0; 
X 

= v(L,B, t )  = 0; 

= w(L,8,t) = 0; 

w ( L , 8 , t )  = 0, - - 
xx 

where t h e  subscr ip t  no ta t ion  has been used t o  denote p a r t i a l  d i f f e r e n t i a t i o n .  

It i s  convenient t o  non-dimensionalize equations (l), and (2), by i n t r o -  

ducing the  following non-dimensional r a t i o s :  

where d i s  t h e  equivalent decay time of t h e  shock-load. 

constant i s  used s ince  the  prime concern here  i s  b l a s t  and impulsive loading. 

The s u b s t i t u t i o n  of these  non-dimensional va r i ab le s  i n  equation (1) and t h e  

This c h a r a c t e r i s t i c  

I 

subsequent Laplace transformation of these  equations, i n  conjunction with t h e  

i n i t i a l  conditions r e s u l t s  i n  

a% -* 2- 
= - b 4 P v  + 

a% 
5 

a 4ii - a? a 4ii a% - + acp - c 2  - c3 2- c4 a55cp2 c5 2 
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where 

L l+v 
1 0 2 R  

a = - -  
0 

VL a = -  
2 R  

L2( 1 -v )  a =  
2R2e2 0 

L( l + v )  
bl = RBo(l-v) 

L c = -  
1 vRQO 

L c = -  - - 2L2 
b2 R 2 e o ( l - v )  2 vR 

2L2 b =  
R 2 e 2 ( l - v )  0 

h2R 
3 12L v 

c = -  

2 R(1-v ) 
' 6  = hv 

2 

2 
- - R( 1-v )pL  

c7 Evd 

h% 
3 4  

c =  2( l + v )  L2p 
2 2  

( 1 - \ J  ) p L  
a =  b =  

5 Ed ' Ed2 12vR Bo 

and where it i s  assumed t h a t  t h e  P ' s  are Laplace-transformable. 

The l i n e a r  system (3 )  of p a r t i a l  d i f f e r e n t i a l  equations i s  now t r a n s -  

formed t o  a l i n e a r  system of  a lgebra ic  equations by t h e  app l i ca t ion  of f i n i t e  

Four ie r  s i n e  and cosine transforms [4]( see a l s o  appendix), with t h e  boundary 

conditions ( 2), i. e. 



c 

Here, t he  superscr ip ts  ind ica te  the type of transformation and t h e  order  i n  

which they were car r ied  out .  Furthermore, t h e  arguments (m,n,s) of t he  

transformed funct ions are order-preserving with respec t  t o  the  arguments 

(S ,C~,T)  of the  o r i g i n a l  funct ions.  

given by 

The coe f f i c i en t s  A i n  equation (4 )  are 
i j  

“4 -*(cs). a a  

a ’ “13 a5 ’ Y - a5 ‘u 

2 
3 11 -. 2 m  7 - - =  al(Ym’n - 

‘ + a $  
A =  ; A12 - - 

5 5 
a 11 

2 2  4 
c 2 + c a 4 + c ( Y $  3 m  4 m n  + c B n  5 . -  ‘6 -*(ss )  

- C > Q 3 = -  c7 %I ’ ‘l’n (Y m 

7 
A = - - ; A  =-. 

7 31 c 32 c7 A33 - 

where a = nm and $ = m are  the  transform parameters f o r  5 and (p respec t ive ly .  m n 

An inves t iga t ion  of these  coef f ic ien ts  A revea ls  t h a t  they a r e  symmetric, i j  

which was t o  be expected f rom the symmetry of t h e  o r i g i n a l  equations.  This 

symmetry becomes qu i t e  u se fu l  i f  one observes t h a t  t h e  s 2 ’ s  may be in t e rp re t ed  

as the  eigenvalues of a r ea l ,  symmetric matrix, obtained from equation (4), 

and as such must be real  [2]. 

t o  equation (4)  and t h e  solut ions wr i t t en  i n  the  form: 

With t h i s  i n  mind, Cramer’s r u l e  may be appl ied 

j=1 
2 

j=1 
3 

j=1 
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" 

where t h e  's a r e  t h e  loading fbnctions as defined i n  ( 5 )  and where 
J 

with 

c 0 
i j  ij E i j  E. .(m,n,sj = + 

s +w- s +w2 
+-  2 2  2 2  

+w3 
=J  

1 
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2 2  
- (y -w2 A ~ ~ ~ : + A  A -A A 1 13 23 12 33 - 

E12 = E21 

+A )W '+A A -A 2 ]  E22 = 'w2 )[w3 33 3 11 33 13 
A b 2 )  
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and I 

I 

I .  

as obtained by some algebraic  manipulation and by means of a p a r t i a l  f r a c t '  ions 

1 .  separation. 
~ 

2 
The w, ' s  are obtained by s e t t i n g  s = - A .  i n  t h e  determinant of t h e  co- 

I 1 

e f f i c i e n t  matrix of e q ~ a t ~ i o n s  (4), and then solving t h e  cubic equation 

3 2 h + 8 h  + B 2 A + 0  = o  1 3 (9) 

obtalned by expansion of t h e  determinant. Here, el, Q2 and 8 are  given by 3 

A )  
2 

8 = (A A A +2A A A -A 2A 3 11 22 33 12 13 23 12 33-A1322-A23 11 

~ 

From Descartes' r u l e  for  t h e  roots  of a polynominal it i s  known t h a t  (9) can 

8 > 0. Since t h i s  must be t h e  have only negative roo t s  as long as el, €12, 

case ,  if t h e  so lu t ion  i s  t o  remain s t ab le ,  it i s  j u s t i f i a b l e  t o  wr i te  t h e  

so lu t ion  lin t he  form (6). 

I 3 

I , The inversion of equations (6) with respect  t o  t h e  Laplace transformation 

, i s  ,now accomplished through t h e  appl icat ion of t h e  convolution i n t e g r a l  

defined by 



I The r e s u l t  i s  
I 

j=1 o 
2 

j=1 o 
2 

j=1 o 

where 

s ince  

Also , 

*ij  s i n  w I-, s i n  w27 + - 
3 

Di j C 
- - ij s i n  y~- + 7 

2 w3 
w 1 

L - l  { } denoting t h e  inverse Laplace transform. 

The f i n a l  s t e p  i n  obtaining t h e  so lu t ion  of t h e  system of equations (1) 

i s  t h e  lnvers lon  of t h e  Fourier sine and cosine transforms. These operations 

are c a r r i e d  out with t h e  use of the  inverse transforms as defined i n  t h e  



appendix. The inversion may be separated i n t o  two parts: 

a )  inversion w . r . t .  cp 

n = l  j=1 o 

b )  inversion w . r . t .  5 

W m 

m = l  n = l  j=1 o 

s i n  B cp cos a 5 n m 

m = l  n = l  j=1 o 

Equations (12) represent  t he  so lu t ion  of t h e  dynamic equations of a cy l ind r i ca l  

s h e l l  segment subjected t o  an a rb i t r a ry  loading, a r b i t r a r y  t o  the  ex ten t ,  

na tu ra l ly ,  t h a t  t h e  loading funct ion be Fourier  transformable. 
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The expressions f o r  t he  s t r e s ses  and moments i n  terms of t h e  displacements 

a re  given by [5 J 

a U  v av N xx = NC + i;; (a - w)] ;  

3 Eh Eh Note t h a t  equations (13) a re  i n  terms of t h e  2 .  where N = - and D = 

dimensional va r i ab le s .  
12( 1-v ) 2 1- v 



Comparison with Experimental Data 

Unfortunately, no experimental da ta  a re  avai lable  which correspond exac t ly  

t o  simple support conditions.  

most c lose ly  approximates the  case of simply supported edges i s  obtained from 

[l], where a buried arch subjected t o  short  and long durat ion blast- loading i s  

considered. 

t h i s  type of loading i s  simulated by an equivalent (equivalent i n  t h e  sense 

of t h e  same t o t a l  impulse) t r iangular  pulse load of t h e  form 

O f  the considered experimental data, t h a t  which 

I n  order t o  keep the  numerical ca lcu la t ions  as simple as poss ib le ,  

t 
P W = Po (1 - $ Y  

where p represents  the  peak overpressure, and d i s  t h e  equivalent decay time. 

Transformation and subs t i t u t ion  i n  equatlon (12) r e s u l t s  i n  

0 

3 

s i n  ct 5 s i n  8 9. m n 

This expression, with t h e  pa r t i cu la s  values: 

2 -3 l b  sec 
h = ,0478 i n ,  L = 57.6 in ,  p = 1.3564 x 10 7 , i n  

i s  used t o  obtain the  def lec t ions  i n  non-dimensional form. 

The experimental and theo re t i ca l  da ta  can be compared only i n  order of 

magnitude due t o  t h e  discrepancies mentioned above. 

eva lua t ion  of equation (12), care must be exercised i n  t runca t ing  the r e su l t an t  

I n  t h e  numerical 
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s e r i e s ,  s ince convergence i s  slow. The d i f f i c u l t y  a r i s e s  for f ixed  m y  with n 

Experiment a1 Theoret ical  

- m=l> = . io5 132 msec 

Peak Crown 
Deflect ion i n  inches .172 0 535 

Max. Response 
a t  Crown i n  msec 15 36 

increasing,  s ince t h e  r a d i a l  frequency, wl, i n i t i a l l y  decreases,  and t h e r e a f t e r  

ncmotonically increases  f o r  some n depending on m. The 

TABLF: 1 

Numerical Comparison with Experimental Data 

i n t e r v a l ,  i n  which w decreases,  becomes smaller with a decrease i n  8 i . e .  1 0' 
h 
R approaching the  shallow s h e l l  range, and with an increase i n  -. From Figure 2 

it i s  apparent t h a t ,  i n  view of the l a rge  d i f fe rence  i n  frequencies the  omission 

of t h e  i n e r t i a l  terms f o r  u and v has l i t t l e  e f f e c t  f o r  t he  lower modes. 

Figure 3 ind ica t e s  t h a t  t he re  i s  a peak de f l ec t ion  a t  13 msec. This, however, 

i s  a r e l a t i v e  maxiniiwl; t he  maxbm occu~rs a t  36 msec as ind ica ted  i n  Table 1. 

' The difference i n  t h e  numerical values of t he  def lec t ions  i s  explained i n  

[l] as the  r e s u l t  of a d i f fe rence  i n  s o i l  densi ty ,  i . e .  s m a l l  reductions i n  

s o i l  dens i ty  r e su l t ed  i n  a l a rge  percentage increase i n  the  def lec t ion .  The 

frequency i n  Table 1, corresponding t o  the  f i rs t  inextensional  symmetrical 

mode, w a s  measured with no ciGwalls i n  t h e  arch.  Since simple supports were 

assumed i n  t h e  nwnerical example, an increase i n  t3he frequency i s  t o  be expected. 

The absence, i n  t h e  t h e o r e t i c a l  response curve (Figure 3),  of t h e  damping 

exh ib i t ed  fo r  t h e  experimental def lec t ion  curve i s  t o  be a t t r i b u t e d  t o  t h e  

rough approximation given by the  t r i angu la r  load.  



Effec t  of t he  Omission of the  I n e r t i a l  Terms 
i n  t h e  Axial and Circumferential Directions. 

The inves t iga t ion  of t h e  omission of t h e  i n e r t i a l  terms i s  r e s t r i c t e d  t o  

t h e  e f f e c t  on the  r a d i a l  frequency. The e f f e c t  on t h e  def lec t ion  i s  not con- 

s idered.  The frequencies,  as obtained here,  a r e  compared t o  those ca lcu la ted  

from the  expression [4] 

* 1 w1 = - 
h pR2 

[E2 + 
R 

2 2  
~1 n) 

+ 
4 

Eh?, 

" 1  
(A2m+P2n)2 

where 

Equation (15)  i s  based on shallow s h e l l  theory,  omitt ing t h e  i n e r t i a l  terms i n  

the  u and v -d i rec t ions .  For t h e  higher frequencies the re  i s  v i r t u a l l y  no 

e r r o r  introduced by using (l5), even out of shallow s h e l l  range. 

e r r o r  i n  the  fundamental frequency ( m = l ,  n=1) increases  as  9 

becomes 41% f o r  8 =IT. 
h 

However, t he  

increases ,  and 
0 

h 
0 R The frequencies increase with increasing - up t o  

_ -  I. which w a s  taken t o  be the  upper bound f o r  t h i n  s h e l l  theory [3]. R 207 
- -  

Again, t h e  e r r o r  introduced by using (15) ins tead  of (9) t o  obtain the  fre- 

quencies i s  negl ig ib le .  

It must be emphasized t h a t  t h e  range of a p p l i c a b i l i t y  of equation (15) 

i s  l imi t ed  t o  a c e r t a i n  frequency range. 

f o r  spher ica l  s h e l l s ,  t he re  a l so  e x i s t  l imi t ing  values of t he  frequencies of 

a c y l i n d r i c a l  s h e l l  segment, beyond which, t h e  i n e r t i a l  terms must be included. 

It w a s  not ye t  poss ib le  t o  determine an ind ica t ive  parameter. The range of 

a p p l i c a b i l i t y  of (15) decreases as increases  and as  9 decreases. A s  can be 

seen from Table 2, equation (15) i s  use less  f o r  - R = 2 20 when n - > 15, m = 1, or 

f o r  - = 

A s  w a s  discovered by E. Reissner [6] 

0 
h 

h when n > 31, m = 1. (The l a t t e r  values do not appear i n  t h e  t a b l e ) .  R V  - 
18 
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Con clus  ions 

The response of a cy l ind r i ca l  s h e l l  segment, subtended by an a r b i t r a r y  

angle 0 and subjected t o  an a r b i t r a r y  loading, i s  obtained, based on t h i n  
0 

shell theory. 

I n  summary: 

inextensional  mode i n  t h e  r a d i a l  d i rec t ion .  (n  = 1, m increasing) .  

h 2. The introduced e r r o r  increases with decreasing - 
3. To obtain the  frequencies corresponding t o  t h e  higher longi tudina l  modes 

R' 

h 1  
- R 20 

( n  > 15 for - = - and m = 1) t h e  i n e r t i a l  t e r m s  must be included. 

Comparisons with experimental da ta  are favorable as far as order of 4. 

magnitude is  concerned. 
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. 

The Fourier sine and cosine transforms are given by [4]: 

a) Single transforms : 
a 

Sine transform: f(s)(n) = s f(cp)sinpntpdcp. 
0 

r" 
cosine transform: f(')(n) = f(cp)cospnqxiq. 

0 

Single inverse transforms : 

Inverse cosine transform: f(cp> = +(c)(o) + - 1 f(')(n)cosPn(p. a 
n= 1 

b) Simple double transforms: 

Double sine transform: f(ss)(m,n) = rf(s,cp)sinamgsir$ n tpdrpdt. 
0 0  

Double cosine transform: f(")(m,n) = r f  (S,cp)cosarnScosBn(p~(pcpdS. 
0 0  

Inverse simple double transforms: 

m Inverse double sine transform: f(s,cp) = ab 
n=l m=l 

W 
Inverse double cosine transform: 

(m, n) 
a a m=l n=l n= 1 a 

21 



e )  Mixed double transforms: 
b a  

Sine-cosine transform: f(sc)(m,n) = 1 f ( s,zp)sincvm5cos@ cpdcpds n 
0 0  

Cosine-sine transform: f(cs)(m,n) = 1 ) r" f(l ,cp)cos~mSsin@ cpdyd5 
n 

0 0  

m Inverse mixed double transforms: 

Inverse sine-cosine transform: 

Inverse cosine-sine transform: 

a 
m = l  n= 1 I 

cos@ cp -1 sincv 5 
n l  m 

m 

m m  

a m = l  n=l 

mn nn where (y = - and 8 = -. 
m b  n a  

Note t h a t ,  i n  general  

It i s  c l e a r  t h a t  when these  transform methods a re  applied the  r e l evan t  

assumptions concerning t h e  functions t o  be transformed a re  made, namely t h a t  

t h e y  s a t i s f y  D i r i c h l e t ' s  conditions i n  t h e i r  respec t ive  i n t e r v a l s ,  and t h a t  t he  

i t e r a t e d  i n t e g r a l s  may be taken successively, i .e.  

and 

22 
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L i s t  of errata 

1. page 1 - 3rd t o  l a s t  l ine,  "Graduate Research Assistant" instead of 
Graduate Student'' 11 

I 

2. page 12 - Immedj&ely following the definit ions of B l ,  82 and 93 
D e  scartes ' instead of De scarte ' s 

I 
I 3. page 12 - Two l i nes  below 2.) - j u s t i f i ab le  instead of just i fyable  

4. page 12 - Last equation on the page; the variable of integration should 
be 

5 instead of t 

5. vase 13 - Last  equation on the page: 

5 instead of 7 

6. page 15. ,- Last sentence 

"are stated i n  terms ofrc instead of 
a r e  i n  terms of" 11 

7. page 16 - Last paragraph, f i r s t  sentence should be,. . . .discrepancies 
mentioned above, and the f ac t  tha t  the calculated.values for  the 
deflections are  out of the small deflection range. In  the . . . . 

8. page 17 - In  table 1, - q instead of w, 

CYd 
m sec 

instead of cycl 
m sec 

9 .  page 18 - The denominator of the second term of equation (15) should be 

(A2, +p.2n )" instead of (A2, + vn 2 ) 
10. page 20 - Rewr i t e  p. 20, as follows: 

C onc lus ion s 

The response of a cylindrical  she l l  segment, subtended by an arbi t rary 

angle 9, and subjected to  an a rb i t ra ry  loading, i s  obtained, based on thin 

she l l  theory. 

I n  summary: 

A. Comparison of the exact frequencies with those obtained from shallow she l l  
theory. 

1. I n e r t i a l  terms af fec t  mainly the rad ia l  frequency corresponding t o  the 
f i r s t  circumferential mode (n = 1; m increasing). 

2. The e r ro r  i n  the frequencies introduced by neglecting i n e r t i a l  terms, 
i s  v i r tua l ly  unaffected by changes i n  1 for  a given 8,. 

' . .  .-; - -_ VFDO 



, 
3. The e r ro r  i n  the frequencies introduced by neglecting iner t ia l  terms, 

increases for  increasing 8,. 
corresponding t o  n = 1, 2, 3 are affected; for the higher podes the 
frequencies obtained by means of the shallow she l l  theory d i f f e r  only 
s l i gh t ly  from the exact frequencies. Hence expression (15): may be used 
to calculate frequencies for she l l  segments out of shallow shel l  range. 

It i s  noteworthy tha t  only the modes 

4. To obtain the frequencies corresponding t o  the higher circumferential 
modes (e.g. n 
included. R 20 

15 for h = 1 and m = 1) the i n e r t i a l  terms must be 

B. Comparison of the theoret ical  r e su l t s  with experimental data. 

1. Times, a t  which peak deflections occur, subsequent t o  loading, agree 
w e l l  with those obtained experimentally; 

2. Maximum deflections compare favorably with experimental values, a s  f a r  
a s  order of magnitude i s  concerned. 
the s t i f fening e f f ec t  of the sand-loading of the arch, and t o  the fac t  
t h a t  the calculated theoretical  values a re  somewhat out of the small 
deflection range, (small i n  comparison t o  the thickness). 

The discrepancies may be ascribed t o  

3. The theoretical  and experimental frequencies, Corresponding t o  the f i r s t  
inextensional symmetrical mode, were i n  good agreement. 
no fur ther  experimentally obtained frequencies were available. 

Unfortunately 


